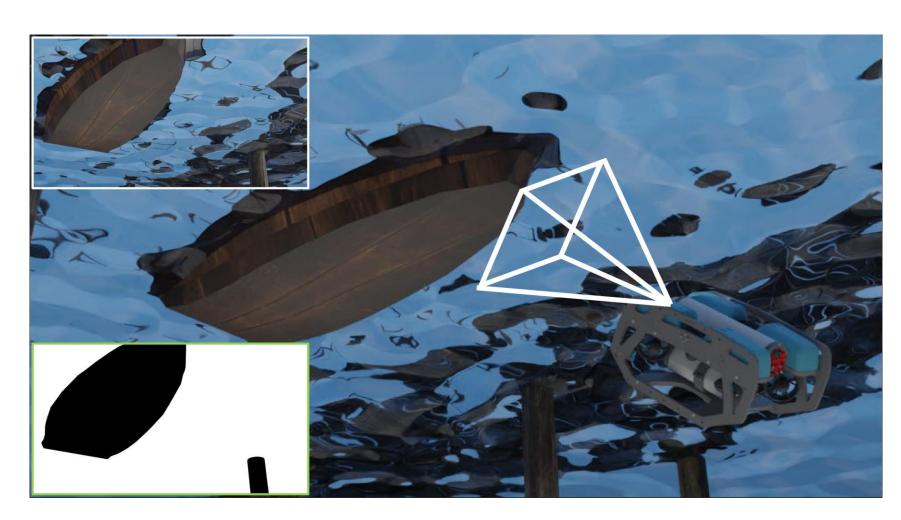
MARVIS: Motion & Geometry Aware Real and Virtual Image Segmentation


DEPARTMENT OF ¹⁸ COMPUTER SCIENCE

Motivation

Proposed Simulator: AquaSim

Simulator	Quality	Rendering	Surface	GT-Mask
UUV [8]	Low	Gazebo	×	Х
URSim [29]	Moderate	Unity3D	×	X
UWRS [30]	Moderate	Unity3D	×	X
HoloOcean [11]	Moderate	UE4	×	×
DAVE [10]	Low	Gazebo	×	×
MARUS [12]	Moderate	Unity3D	\checkmark	×
UNav-Sim [13]	High	UE5	×	×
AquaSim (Ours)	Highest	Blender	\checkmark	\checkmark

- A novel simulator includes the intricate modeling of water-air interface imaging
- Supports the adjustment of various media attribute parameters, such as color, wave characteristics, reflection properties, etc.
- Efficiently generate tailored datasets alongside corresponding ground-truth image masks

Quantitative Comparison

- Trained solely in the synthetic domain without extensive labeling, maintaining performance in unseen real world.
- Significantly improved generalization ability on unseen domains by incorporating domaininvariant priors. (LME and EGC)
- Leveraging LME and EGC, enabling a lightweight network to rapidly converge with robust latent feature representation.
- Much lower computational overhead, making it feasible to deploy on computationally constrained drones and AUVs

Model	Params ↓	IoU ↑		F1 ↑	
		Real	Syn	Real	Syn
WASR [17]	71 M	13.24	29.10	21.78	44.37
WaterNet [23]	22M	41.08	53.86	49.63	59.45
PSPNet [42]	11.32M	61.35	87.48	74.63	90.51
Deeplabv3 [38]	5.63M	68.68	89.02	79.26	93.01
PAN [39]	4.10M	61.65	89.69	74.45	93.56
UNet [40]	31.04M	51.11	91.91	66.85	94.96
FPN [41]	13.05M	66.84	91.91	78.65	94.94
MARVIS(Ours)	2.56M	78.56	94.08	86.47	96.35

Inference rates: $43.48 FPS - NVIDIA^{TM} RTX 4070 GPU$ **8.06 FPS** – IntelTM Core i9 – 4.10GHz CPU

Jiayi Wu^{1*}, Xiaomin Lin^{1*}, Shahriar Negahdaripour^{1,2}, Cornelia Fermuller¹, Yiannis Aloimonos¹

¹University of Maryland, ²University of Miami

Local Motion Entropy (LME)

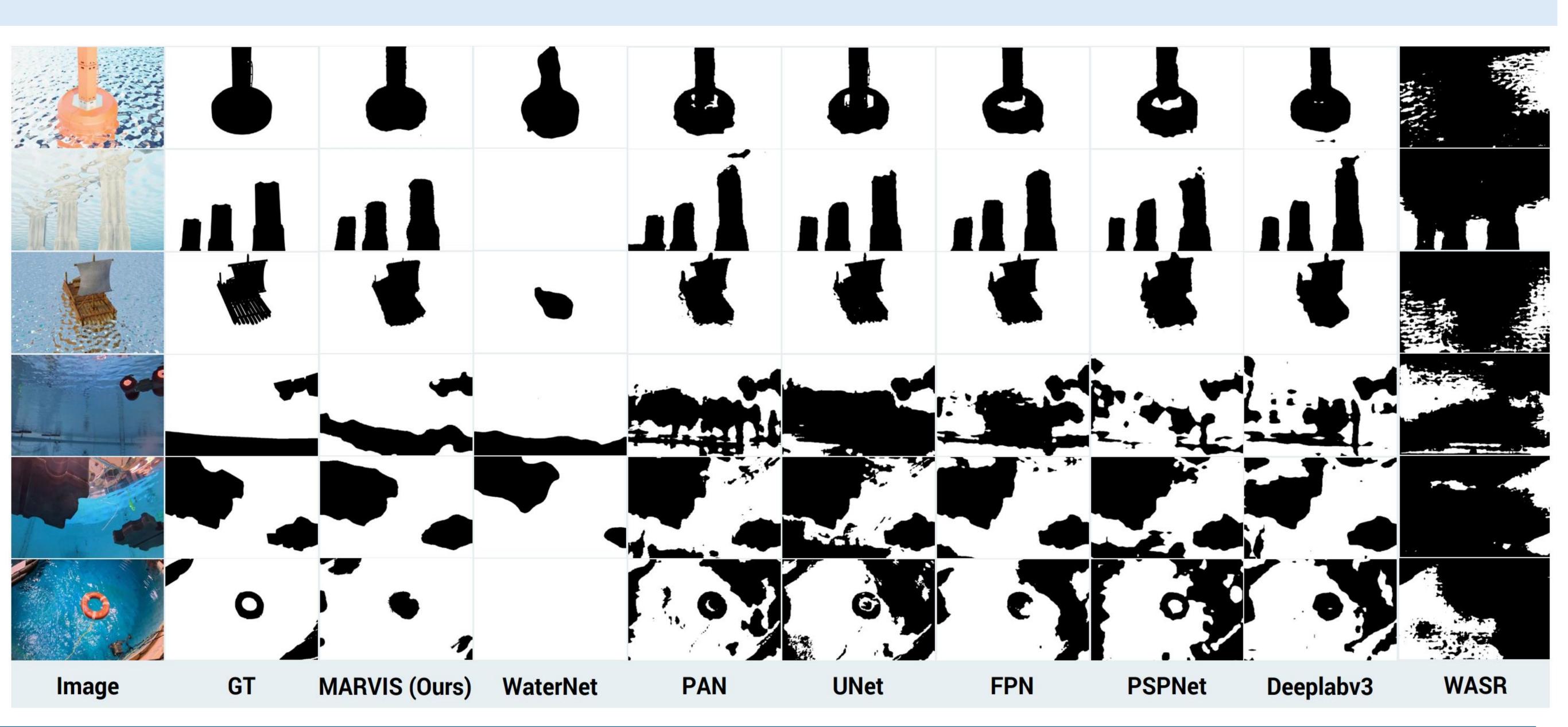
- > Air-water interfaces with highly variable dynamics and turbulence lead to virtual images with chaotic motions.
- Real objects within the same medium as the camera tend to exhibit relatively smooth motions.

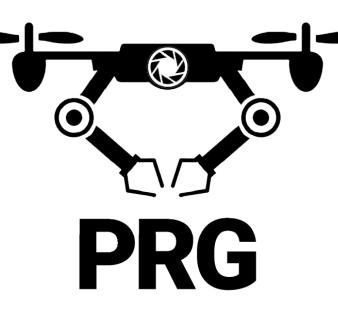
Epipolar Geometric Consisten

- > The refracted rays form a virtual image that geometry under different camera viewpoints
- We formulate the EGC as a weak supervision accuracy.

$$\mathcal{L}_{EGC} = \frac{\sum \left[-(\hat{\mathbf{y}} - 1) \cdot \mathbf{E}_{EGC}\right]}{Count_{(-(\hat{\mathbf{y}} - 1)) \cdot \mathbf{E}_{EGC} \neq 0)}},$$

Qualitative Comparison

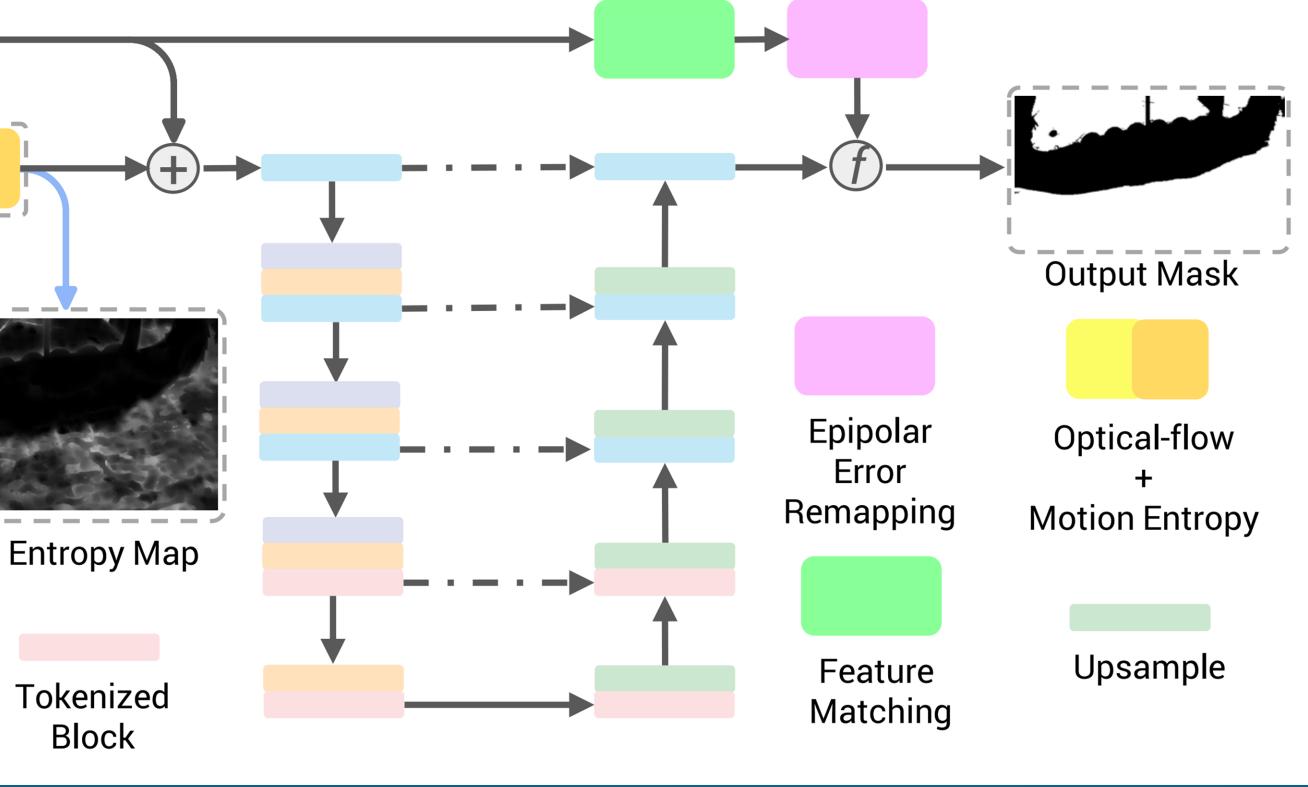

Experimental Analysis:


- Training on spatial pixel information alone confuses reflections and refractions with real images due to similar RGB colors and textures.
- The domain gap in the RGB space between various domains results in poor generalization to unseen domains.

Advantages of MARVIS:

- Task-tailored feature representation uses motion and geometric cues, enhancing the network's ability to distinguish between virtual and real images in the latent space.
- The domain-invariant priors allow MARVIS to maintain stable and robust segmentation across various environments without retraining.

Network Architecture:
$$MA$$
 $H(\mathbf{M}, \mathbf{A}) = -\alpha \cdot \sum_{m \in \mathcal{M}} p(m) \log_2 p(m)$
 $-\beta \cdot \sum_{a \in \mathcal{A}} p(a) \log_2 p(a),$ \diamond A novel approach for segmentation
 \diamond A new network layer for extracting
 \diamond A novel Epipolar Geometric Consist
 \diamond A novel Epipolar Geometric Consist
 \diamond A novel Epipolar Geometric Consist
 \diamond Consecutive FramesIncy (EGC) \cdots Skip Connections
 \bigcirc Concatenate
Conv Block:
Conv2d + BN + ReLU $\hat{\mathbf{y}} - predicted binary mask$
 $\mathbf{E}_{EGC} - epipolar error map \cdots Max
Block $\hat{\mathbf{y}} - predicted binary mask$ \mathbf{Conv}
Block $\hat{\mathbf{Conv}}$
 \mathbf{Max}
 \mathbf{Max}
 $\mathbf{Module}$$



ARVIS

on, exploiting synthetic images combined with domain-invariant information g Local Motion Entropy (LME) features

stency (EGC) loss as weak supervision to embed geometric priors in training

